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1. Introduction

Consider the batch separation of a suspension in a cylindrical tube which rotates about an axis
perpendicular to the axis of the tube. This problem is relevant to devices used in biology and
medicine laboratories. The full solution is bound to be very complicated because of the many
effects involved, but useful approximations can be readily derived from the available theory
(Ungarish, 1993). Anestis and Schneider (1983) made such an attempt, but they used a simplifi-
cation which led to physically unacceptable (or at least hard for interpretation) results. Stibi and
Schaflinger (1991) also made an indirect contribution to this problem, but the pertinent results are
obscured by the different scope of their study.

The objective of this note is to clarify briefly the essentials of the analysis of this process and to
present several simple results that may be useful to engineers and to further investigations.

2. Analysis

Consider the straight tube centrifuge sketched in Fig. 1. The Cartesian x)z system, co-rotating
with the tube with constant angular velocity Q2 about the axis z, is used. The coordinate x is taken
along the axis (centerline) of the tube. The cross-section area of the tube, in the yz plane, is
constant; let us denote by A the area, by C the bounding curve and by D the typical width (for
example, 4'/?) of this geometry. The length of the container is L. The boundaries x = x; and
x = R =x; + L of the considered container are referred to as the inner and outer walls, respec-
tively, and the tube provides the side walls of the centrifuge. Usually, the tube container is slender,
L > D, and located not far from the axis of rotation, x;/L < 1, but these assumptions are not
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Fig. 1. Schematic view of a tube centrifuge rotating about the axis z. The shock xp(#) divides between the pure fluid
domain (white) and the suspension of “heavy” particles domain (gray). The thin sediment layers are not shown. The

cross-section )z (enlarged) has a constant area 4 and bounding curve C; the normal vector i is also shown. The
boundaries x = R and x = x; are called “outer” and “inner”” walls, and the tube provides the “‘side walls”.

essential to the analysis. We assume x; > D for achieving some simplifications of the discussion, in
particular concerning curvature terms.

The container is filled with a monodispersed suspension of “heavy” small particles (initial
volume fraction «(0)) and, at 1 =0, is set rapidly into rotation with constant Q. We assume
that solid body rotation is established quickly, before any significant separation occurs, and
that the influence of the gravity acceleration g can be neglected (the criterion is discussed
later). The suspension in the tube is therefore subjected to the body force introduced by the
centrifugal acceleration Q*(xX + y¥); this is counteracted by a pressure distribution which
keeps the fluid in solid body rotation with the tube (within a small deviation not considered
here).

On the other hand, the heavy dispersed particles are not sufficiently restrained by that pressure
field and start to move in the direction of the body force. The excess centrifugal drive (a buoyant
force) on the particle is balanced by the Stokes drag induced by the velocity of the particle relative
to the embedding fluid. This buoyancy-drag balance indicates that the “dispersed phase” moves
with respect to the “continuous phase” with the relative velocity

vr = Ub(a)(xX + ), (1)
where
U=¢Q and b(a) =(1—a)/u(x), (2)

e=(pp —pc)/pc, B=(2/9)a’Q/v; (3)
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here p is the density, the subscripts D and C denote the dispersed and continuous phases, a is the
radius of the particle, v the kinematic viscosity of the clean suspending fluid, o is the volume
fraction of particles, and u(«) is the effective viscosity ratio correlation, usually taken as (1 — o) ™",
with m = 2.5 or 3.1.

It is important to notice that vz has a component in the lateral direction y which is an odd
function of y. Although this component is relatively small as compared with the component in the
longitudinal direction X in a slender tube (D/L < 1), it’s contribution to the separation process
turns out to be significant.

The separation features are as follows. The particles are driven out from the bulk of suspension
according to the above relative velocity, away from the inner wall (i) and towards the side walls
(sw) and outer wall (ow). A region of pure fluid x; < x <xp(¢) and layers of sediment (assumed very
thin) appear.

The local volume fraction in the domain of suspension decays. This feature is governed by the
particle conservation equation (see Ungarish, 1993, Section 2.5)

%+[j+(l—2oc)v1g} Vo= —a(l —a)V - v, (4)

subject to the initial conditions o = «(0) in the domain of interest, where j is the volume velocity of
the mixture (recall: j = avp + (1 — &) v, Ve = vp — Ve and V - j = 0). In general, this equation can
be solved by the method of characteristics. Substituting (1) in (4) and considering the initial
conditions, we observe that all characteristics carry the same information and actually the solu-
tion « in the entire suspension domain is a function of ¢ only and given by

% = —2efQP(x), P(o) =a(l —a)b(x), with given «(0). (5)

At the boundary of the suspension domain, jumps into pure fluid and sediment regions via stable
kinematic shocks are assumed. The detailed solution is beyond the scope of this note, but the
analysis is expected to be straightforward, at least for small concentrations. The numerical
evaluation of «(z) from (5) is straightforward, but in the dilute limit o — 0, ®(a) = «, (5) yields
the approximate result

o(t) = a(0) exp(—2ef Q). (6)

The same results for the behavior of «(¢) are obtained for the separation of a similar suspension
in a long cylindrical centrifuge whose axis of symmetry coincides with the axis of rotation,
z (Ungarish, 1993, Section 4.2).

During separation the (shrinking) volume occupied by the suspension is ¥~ = A[R — xp(¢)] and
the (expanding) volume of the pure fluid region is #"p = A[xp(¢) — x;] (again, the sediment layers
are assumed to be very thin, and we neglect the small curvature of the shock, which is expected to
be cylindrical around the axis z). Consider the rate of production of pure fluid in this centrifuge.
As shown in Ungarish (1993), Section 2.3, in a closed container and when the volume fraction of
the particles in the suspension domain is a function of 7 only, volume conservation of the com-
ponents requires

are _1ds
dr o dt

v+ Js, (7)
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where the first term of the RHS represents the contribution of the decay of « inside the suspension
zone and the second term represents the contribution of the settling (or sedimentation) of particles
on the boundaries. Since the volume of pure fluid cannot decrease and the first term of the RHS is
negative, we conclude that settling on the boundaries must take place at least at the rate necessary
for removing the particles expelled from the suspension due to the decay of o (the squeezing
effect).

In the present configuration, the settling term has two contributions, from the side wall (de-
noted sw, the tube) and from the outer wall (denoted ow, the lid x = R), and can be expressed as

Js:—(l—oc)[/ska-ﬁdAJr/ova-ﬁdA}, (8)

where n is the unit vector pointing into the container.

To evaluate the first integral in (8) we first notice that the normal vector to the side wall is in the
yz plane, see Fig. 1, and hence only the y component of vg, given by (1), contributes to the settling
on the side wall. Also, we observe that settling takes place for x > xp(¢) only. Therefore, we rewrite

R

ISW:/ Ve -dd = dx[/Ub(a)yy.ﬁds], 9)
SW xp(1) C

where ds is the arc length differential along the bounding curve. Using Green’s theorem,
—$-.V-ids = [ [V-Vd4 (the — sign is for the present inward direction of h) we obtain the
compact result

Iy = —Ub(a)A[R — xp(1)]. (10)

It is remarkable that only the area 4 of the tube cross-section, but not the shape, is of importance
in this result.

The evaluation of the second integral in (8) is straightforward. At the outer wall x = R and
n = —x, and using (1) we simply obtain

Loy = / Vg -nd4 = —Ub(a)AR. (11)
Substituting these results into (8) and using the definition of @(«) given in (5) yields
1
Js = . & (a)UA2R — xp(1)]. (12)

This expression is the contribution of the sedimentation to the rate of production of pure fluid.
The noteworthy fact is that the settling on the side walls may be a very significant component of
the process: the ratio Iy, /I,y is L/R at the beginning of separation (xp = x; = R — L), but decays as
xp(t) approaches R.

The result (12) can be expressed in the following convenient form, after the use of (5) to
eliminate @(o) and recalling ¥~ = A[R — xp(t)], U = ¢fQ

1 da 1

Next, substituting (13) into (7) yields
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d7p  11da

dt  2adt

which, since ¥'p = A[xp(¢) — x;], can be readily reduced to an equation for xp(¢) and solved. The
result, subject to the condition that the pure fluid shock starts its propagation at x = x;, is

Axp(t), (14)

- %(0) 1/2
)Cp(t) —Xl[w] s (15)
with «(z) provided by the integration of (5). In the dilute limit, see (6),
xp(t) = x; exp(efQt). (16)

The separation is completed at the time #, when xp(¢) reaches the position of the sediment layer on
the outer wall. In the dilute case, the condition xp(t.) = R yields, after use of (16)

tsc:—ﬁﬁ%ln (1—%). (17)

The representative separation time interval is (eﬂQ)fl, during which a significant decay of the
volume fraction o takes place.

Surprisingly, the same formulas for the position of the pure-fluid interface, xp(¢), and separa-
tion time interval, £, are obtained for a long axisymmetric cylindrical centrifuge of inner radius x;
and outer radius R = x; + L (again, the axis of rotation and symmetry is z, and x is regarded as the
radius in a cylindrical system, see Ungarish, 1993, Section 4.2). In such a centrifuge, there are no
side walls and obviously all the sedimentation is on the outer wall.

Suppose that the gravity acceleration acts in the z direction. The contribution to the relative
velocity is, approximately, [(2/9)ea’g/v]z. During the typical separation time interval, (¢fQ) ",
the corresponding displacement of a particle is g/Q*. If g/Q* < D this effect can be ignored,
otherwise gravitational sedimentation on the side wall must be taken into account.

3. Concluding remarks

The main conclusion is that for the separation process of a suspension of heavy particles, there
is a remarkable similarity between the tube centrifuge and the cylindrical axisymmetric (or sector
of it) centrifuge as regarding the behavior of «(z) and position of the inner pure fluid and outer
sediment shocks. (The compared centrifuges rotate with the same 2 about the same axis, and have
similar positions of the inner and outer boundaries.) On the other hand, the settling on the side
walls of the tube has no counterpart in the axisymmetric cylindrical case. These features are
straightforward consequences of the balance between the centrifugal buoyancy and the linear
Stokes drag that is assumed to govern the motion of the dispersed particles. However, for very fast
rotation and/or large particles (when f is not very small) the “postulate” (1) is invalid. These and
other related effects require a different analysis along the lines indicated in Stibi and Schaflinger
(1991) and Ungarish (1993).

Anestis and Schneider (1983) neglected the y component of the relative velocity, see (1), and
obtained results which differ significantly from the present ones. Indeed, the y velocity component
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is small as compared with the x component when the tube is long and thin, D/L < 1, but nev-
ertheless the contribution of this small effect (the sedimentation on the side walls) when integrated
over the length of tube turns out to be important. Actually, a typical particle must travel only a
small distance (say D) in the y direction in order to hit the side wall, but a much larger distance
(say L) for reaching the outer wall, and this small distance ratio may compensate for the small
velocity-component ratio, with the result that the aspect ratio parameter of the tube, D/L, does
not affect the separation (assuming thin sediment layers, see below). Furthermore, if the y com-
ponent is neglected in (1) the divergence of the centrifugal field is distorted and an error of 50% is
introduced in the V - v term in the right-hand side of (4). In other words, in general, centrifugal
separation cannot be treated as one-dimensional in Cartesian coordinates.

However, one would expect that in some limiting cases of the considered configuration, the
centrifugal separation process in the tube is analogous to the more conventional gravity settling in
a similar straight container (with the appropriate use of QR instead of g). This analogy is indeed
attained when the length of the tube is much smaller than the distance from the axis of rotation,
L < R. In this case, the variation of the centrifugal driving force over the length of the container is
relatively small, and the settling on the side wall is much smaller than on the outer wall (recall
Ly /Iow < L/R). The expansion of (17) for small values of (L/R) yields, to leading order in this
parameter,

t« ~ L/(efQR) (L/R<K 1), (18)
and substitution of this result in (6) indicates that
a(te) = a(0)(1 —2L/R) (L/R<1). (19)

Thus, in this limit the separation is essentially represented by the motion of the pure-fluid interface
with constant velocity (2/9)ea>?Q*R/v in the x direction, while the volume fraction o in the sus-
pension region is almost constant. But note that the same results are obtained for an axisymmetric
cylindrical centrifuge of outer radius R and inner radius R — L when L/R < 1, so it is not the tube
geometry but rather the behavior of the centrifugal driving in a shallow layer of suspension
(compared with the distance from the axis of rotation) that creates the analogy with the gravity
separation.

The assumption that the sediment layers are very thin can be relaxed by replacing R with xs(¢)
and 4 with 4 — 0A(¢,x) in the foregoing analysis, where xs is the position of the sediment shock
formed on the outer wall and J4 is the area of the accumulated sediment on the side walls. Some
information about the motion of the sediment is required for progress. For example, if the sed-
iment sticks to the boundary xs(z) behaves like in a cylindrical centrifuge, and 64 is x-independent
for x > xp; the particular shape of the tube becomes important.

Another possibility is that the sediment slips along the side walls to the outer wall, without re-
mixing. Under the assumption that the sediment accumulates on the outer wall in a uniform layer
of maximal volume fraction oy behind the shock xs(¢), we can estimate the position of this shock
by the following dispersed phase volume balance

o [R — xs(2)] + (1) fes (£) — xp(6)] = 2(0)(R — xi) (20)

which, after arrangement and use of (15), yields
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xs(t) = { Rlan = (0)] + 2 0)xi[1 = (x(0)/(0))"*] } ————.
ap — o2)
The value of o(¢) is provided by (5).

The foregoing analysis may be formally applied in a similar manner to a suspension of “light”
particles with the understanding that the particles settle now on the inner wall while pure fluid
domains appear adjacent to the outer and side walls. However, this transformation is not trivial
because thick pure fluid domains adjacent to the side wall may be unstable; instead, thin layers
with a Boycott-effect type flow may develop. This is a complicated topic that needs careful
theoretical and experimental investigation.

(21)
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